Modelling and Analysis of Acoustic Field in Im- Pedance Tube Using Cellular Automata

نویسندگان

  • Bo Zhang
  • Xingbo Wang
چکیده

Porous metallic material and its compound sound absorbing structures are very popular for the practical applications in harsh environment such as high temperature, humidity, and high sound pressure levels. There are all kinds of mathematic models available to predict the sound absorption properties of porous metal in literatures elsewhere. In this work, Cellular Automata is applied to model the acoustic filed in an impedance tube with and without porous metal. In this Cellular Automata model, a center difference scheme to discretize the linear wave motion equation is used to deduce the local interaction rules between the cells on the different boundary and their neighbor cells. In particular, the local interaction rules between the cells on the given acoustic impedance boundary and other neighbor cells have been improved to predict well the sound absorption and propagation inside impedance tube at lower frequencies. After the improvement, the complete standing wave shape at lower frequencies inside impedance can be observed clearly. Also the propagation of the forward and backward travelling waves including the resultant standing wave with regard to time and space has been depicted relatively completely. Finally, the analytical result for the sound absorption properties of porous metals in impedance was put forward for comparison. And a good agreement between the results related to the different approaches was obtained as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Approach for Detecting Relationships in Social Networks Using Cellular Automata Based Graph Coloring

All the social networks can be modeled as a graph, where each roles as vertex and each relationroles as an edge. The graph can be show as G = [V;E], where V is the set of vertices and E is theset of edges. All social networks can be segmented to K groups, where there are members in eachgroup with same features. In each group each person knows other individuals and is in touch ...

متن کامل

Energy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach

This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...

متن کامل

Robot Path Planning Using Cellular Automata and Genetic Algorithm

In path planning Problems, a complete description of robot geometry, environments and obstacle are presented; the main goal is routing, moving from source to destination, without dealing with obstacles. Also, the existing route should be optimal. The definition of optimality in routing is the same as minimizing the route, in other words, the best possible route to reach the destination. In most...

متن کامل

Improved Frog Leaping Algorithm Using Cellular Learning Automata

In this paper, a new algorithm which is the result of the combination of cellular learning automata and frog leap algorithm (SFLA) is proposed for optimization in continuous, static environments.At the proposed algorithm, each memeplex of frogs is placed in a cell of cellular learning automata. Learning automata in each cell acts as the brain of memeplex, and will determine the strategy of moti...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016